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I. Background: Longitudinal clinical data, missinginess and 
dropouts

Although studies are designed to collect data on each 
subject’s measurements, different patterns of 
missinginess and dropouts are quite common. The 
alternatives for analyzing the data are:

a)
 

Analyze only data for subjects who complete the trial 
(completers)

b)
 

Analyze only the observed data
c)

 
Use single or multiple imputations to replace the missing 
data, then analyze the ‘completed’

 
data set

d)
 

Build a longitudinal model for the data which includes a 
model for the dropout.
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I. Background: Longitudinal clinical data, missinginess and 
dropouts

The underlying assumption for (a) and (b) is that missing data are 
ignorable (Rubin,76); (observed data constitute is a random sample 
of the observed and unobserved data).
The underlying assumption for (c) is that a missing value is 
completely predictable, either from its past (LOCF) or from its 
‘neighbors’ (multiple imputations).
The last option (d) does not make such strong assumptions and also 
is the most useful, as it states the assumptions of the model and 
allows checking the sensitivity of the conclusions to the assumptions 
about the dependency between dropouts and the response.  
However, it is the most complex computationally. 

Here we consider option (d), as analysis findings under (a), (b) and 
(c) are expected to be biased due to their unrealistic and unverifiable 
assumptions. 
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I. Background: Longitudinal clinical data, missinginess and 
dropouts

Focus on:

Non-ignorable dropouts.

Count data: Unlike the multivariate normal, there is no unique 
multivariate distribution (allow for dependency and dropouts)

Consider joint models for the multivariate outcomes and dropout
indicators to correct for the bias. Models for dropouts are generally 
non identifiable

The need to place (un-verifiable) assumptions about dropouts
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Notations (standard, e.g. Little & Rubin) 
denotes subject i  ( i=1,2,…N) measurements made at times 

.

can be observed or missing.

Define a measurement indicator       such that: 

if        is observed and 

= 0   if        is missing.

Corresponding to       we have:   

The full data set can be represented as: 

Here we assume missingness is due to dropouts and we could write:   
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II. Missing data mechanism and impact on modeling and 
estimation
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II. Missing data mechanism and impact on modeling and 
estimation

For dropout define a dropout indicator:

measures the occasion in which the dropout occurs.

The joint model for the outcomes and dropouts indicators (Rubin 1976; 
Little and Rubin 2002) is:

where     and      denote design matrices for the measurements and 
missingness, respectively;      and      are the corresp. parameters. 
The selection model factorization is based on:

That is, use a complete data model for the longitudinal outcomes

 

and 
then model the probability of dropout conditional on the possibly 
unobserved outcomes, (frequently, computationally intractable).

 ∑ =+= in
j iji RD 11

 iD

WiX
θ Ψ

),,/(),/(),,,/,( ΨWyrθXyΨθWXry iiiiiiiii fff =

),,,/,( ΨθWXry iiiif
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II. Missing data mechanism and impact on modeling and 
estimation

The pattern mixture model ( Little 93, & 94) is based on factorization:

which allows for different response model for each pattern of

 

missing values.

The shared parameter models ( Wu and Carroll, 88 and Wu and

 

Bailey, 88 and 
89) ) is based on the factorization :

Includes a vector of unit-specific latent (random ) effects       which is shared 
between both factors in the joint distribution.       is a latent trait driving both the 
measurement and missingness

 

processes. It is sensible to assume the two 
processes are conditionally independent given      .

),/(),,/(),,,/,( ΨWrθXryΨθWXry iiiiiiiii fff =

),,,/(),,,(),,,,/,( iii bΨWyrbθXybΨθWXry iiiiiiiii fff =

ib
ib

ib
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II. Missing data mechanism and impact on modeling and 
estimation

(Rubin 1976; Little and Rubin 2002): Consider the selection model 
framework: 

MCAR if the prob. of missing is independent of the response

Thus the joint dist. can be simplified to:

MAR if the prob. of missing is independent of unobserved response: 

MNAR, neither MCAR nor MAR holds ( no simplification for the joint dist. is 
possible)

),/(),,/( ΨWrΨWyr iiiii ff =

),/(),/(),,,/,( , ΨWrθXyΨθWXry iiiiiiii fff =

),,/(),,/( ΨWyrΨWyr i
o
iiiii ff =

),,/(),/(),,,/,( ΨWyrθXyΨθWXry iiiiiiiii fff =
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III. A motivating example (actinic keratosis count data)

Data (masked) for a multi-center, placebo controlled, 
clinical trial for treatment of actinic keratosis (AK) lesions 
on the face and balding scalp.  Treatment is for 16 weeks 
with efficacy evaluation at week 24. Visits at weeks: 0, 4, 
8, 16 and 24. To qualify for enrollment a subject should 
have 4-8 AK lesions. The objective of the trial is to 
establish efficacy for the test drug.



Alosh_BASS 11/07/07 11

III. A motivating example (actinic keratosis count data)

Subject Lesion Count profile ( Center A), mean change for center A and mean for the overall study pop. 
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III. A motivating example (actinic keratosis count data)
 

Box plot for number of AK over time active vs vehicle
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III. A motivating example (actinic keratosis count data)

Scatter plot for number of AK (per subject and slope) at time t vs. AK at time (t-1)

Count (time t) vs. Count (time t-1)
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III. A motivating example (actinic keratosis count data)

Comments:
•

 
Unevenly spaced time of measurements.

•
 

Slight decrease in # of AK over time for vehicle with relatively
 constant variability to the mean over time. 

•
 

In contrast, substantial reduction in # of AK for the active after 
week 8, with  over time greater variability in response (might be 
typical for active drugs).

•
 

Impact of subject’s AK counts on subsequent time counts 
(varies by trt arm ?) 

•
 

In light of the differences between the two groups: What is a 
reasonable model for such data? 

We will discuss alternative models for analyzing such data, both 
standard models as well as brief discussion of new 
methodologies.
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III. A motivating example (actinic keratosis count data)
 

Dropouts pattern by trt arm and AK counts prior dropouts:

Is dropout related to time (visit)? 
Is dropout related to treatment? 
Is dropout related to previous AK counts?
What is the impact of the above questions on the modeling approach?

Drug      WK0          WK4         WK8           WK16          WK24
1

 

4                X               X                X       X
1             6                X               X                X                  X
1             7                X               X                X                  X
1             5                2               X                X                  X
1             4                4               X                X                  X
1             5                6               X                X                  X
1             5                5             10                X

 

X
0             5                5               X                X                  X
0             5                5               5                2                   X
0             5                5               6                X                   X
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IV. Marginal Models for Repeated Measurements (MMRM): 
a. GEE approach:

Assume AK count data follow Poisson distribution. Then, as Poisson is a member 
of the exponential family,

⇒

 

Generalized Linear Model (GLM). The GLM is based on:

Where      is  a dispersion parameter ( may be known)

⇒ Use the Generalized Estimating Equation (GEE) of Liang and Zeger (1986) to 
get estimates for the model parameters: The GEE is based on solving the equation:

)(;)( ημημ hg === Xβ
 )(μφ VVi = φ

where: 

0)()()( 12/12/1
1 =−

′∂
∂

= −
=∑ iiiii

N
i

iS μyARA
θ
μθ φ

2/12/1)( iiiiiVar ARAVy φ==
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IV. Marginal Models for Repeated Measurements (MMRM):

Parameter Estimate SE( emp.) Z Pr > Z

Intercept
Trt
Time
Time*trt

1.757
0.186

-

 

0.003
-

 

0.042

0.056
0.087
0.003
0.011

30.97
2.15

- 1.20
- 4. 03

< 0.001
0.032
0.231

< 0.001

We consider fitting the following linear model using Proc GENMOD:

(1)

The results of fitting the final model (exch. correlation structure) are given by:

Table 1. Estimation results for model (1) 

 )*())(log( 3210 iijiijij trttimetrttimeYE ββββ +++=
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IV. Marginal Models for Repeated Measurements (MMRM):

As the 2 trt. Arms are similar up to week 8, we consider fitting the following 
model to allow for different changes before and after week 8. 

(2) 
The results of fitting this model are given in Table (2):
Table 2. Estimation results for model (2)

Parameter Estimate SE( emp.) Z Final model  Est. 
(SE)

Intercept
Trt
Time
(Time-8)+
Time*trt
Trt*(time-8)+

1.755
0.063

-0.003
-0.001
-0.001
-0.068

0.035
0.058
0.009
0.014
0.015
0.029

49.96
1.09

- 0.31
- 0.06
- 0.04
- 2.32

1.744  (0.058) 
0.062 ( 0.080)

-0.005 (0.005)

-0.069  (0.019)

++ −++−++= )8(*)*()8())(log( 54210 ijiijijijij ttrttrttimetimetimeYE βββββ
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IV. Marginal Models Repeated Measurements (MMRM):
 b. WGEE-Modeling Dropouts

•

 

The GEE methodology is valid under the assumption that the missing 
data is MCAR. Estimation results are expected to be biased if the 
MCAR assumption is violated.

•

 

Fit model for dropouts to check whether it is MCAR. The model can 
be used to estimate the propensity for dropouts. 

•

 

Use WGEE, by assigning weights (inversely proportional to the 
propensities for dropouts) to the observed response to handle MAR.

•

 

The WGEE is based on solving the following:

0)()(1)( 12/12/1
1 =−

′∂
∂

= −
=∑ iiiii

N
i

i

i
S μyARA

θ
μθ φ

ν

')( iji v=v )( jDpv irij ==where: with:
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IV. Marginal Models Repeated Measurements (MMRM):
 b. WGEE-Modeling Dropouts

•
 

The propensities for dropouts can be estimated as a 
function of observed responses prior to dropout and other 
covariates that are likely to predict dropout, say, treatment. 

Molenberghs and Verbeke (2005) presented “DROPOUT’
 and ‘DROPWGT”

 
macros to construct the variable 

‘dropout’
 

and ‘previous measurements’
 

and to pass the 
weights (predicted probabilities) to be used for WGEE. 

For the AK data we consider the following model: 

(3)trtyjDjDPit jiii 21.10)/(log ψψψ ++=≥= −
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IV. Marginal Models Repeated Measurements (MMRM):
 b. WGEE-Modeling Dropouts

The results of fitting model (3) for dropouts is given in following table.

Table 3. Estimation results for the dropouts (model 3) .

Parameter Initial model 
Estimate    SE      p-value

Final model
Estimate       SE         p-value

Intercept
Trt
Previous

-3.350
1.030

-

 

0.058

0.911
0.705
0.129

0.0002
0.144
0.652

-3.212
1.504

0.416
0.474

<0.0001
0.0015
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IV. Marginal Models Repeated Measurements (MMRM):
 b. WGEE-Modeling Dropouts

It should be noted that mean AK counts for the completers vs those of 
dropouts, by treatment and visit, are given in the following

Table 4. mean number of AK (n) by dropout status, visits and treatment

Visit 0 4 8 16 24

Completers
active
vehicle

5.87 (61)
5.87 (30)
5.87 (31)

6.10 (58)
6.74 (27)
5.55 (31)

5.76 (54)
5.75 (24)
5.77 (30)

4.56 (52)
3.39 (23)
5.48 (29)

3.84 (51)
1.96 (23)
5.39 (28)

Drop.(prev.)
active 
vehicle

5.66 (3)
5.66 (3)
NA

3.50 (4)
3.33 (3)
5.00 (1)

8.00 (2)
10.00 (1)
6.00 (1)

2.00  (1)
NA
2.00 (1)
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•
 

Although the numbers are small for dropouts, ‘previous’
 counts prior to dropout are similar for completers and 

dropouts. This might explain that ‘previous’
 

counts are 
not predictive of dropping out. 

•
 

There are 7 dropouts in the active vs 3 in the vehicle. 
Table 3 results show the propensity for dropping out is 
higher for subjects on active trt compared to those on 
placebo (1.504 on the log odds scale). 

IV. Marginal Models Repeated Measurements (MMRM):
 b. WGEE-Modeling Dropouts
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IV. Marginal Models Repeated Measurements (MMRM):
 b. WGEE-Modeling Dropouts

•
 

As ‘previous’
 

counts are not predictive of dropouts 
•

 
→ ( strictly speaking) we have MCAR

•
 

→ Complete Case Analysis ???

•
 

Here as dropouts are mainly due to irritation
•

 
Do we need to expand the MCAR def. for drug 
development to capture other covariates, such as drug, in 
addition to the ‘previous’

 
counts?

•
 

If so, what is ‘
 

an appropriate’
 

approach for handling 
dropout in this case ? 

•
 

Expanding the MCAR definition, use WGEE to assign 
weights for completers to compensate for dropouts

Y
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IV. Marginal Models Repeated Measurements (MMRM):
 b. WGEE-Modeling Dropouts

Following calculation of the weights for the observed data for the 
WGEE, the results of the final fitted linear model (1) along model (3) 
for dropouts are given by:

Table 4. Estimation results for the WGEE (model (1) and model (3))   
compared with those of the GEE

Parameter WGEE
Estimate         SE (emp.)         Z

GEE
Est. (SE)

Intercept
Treatment 
Time
Time*treat.

1.686
0.204

-0.008
-0.035

0.025
0.076
0.008
0.014

67.94
2.69

- 1.01
- 2.51 

1.757  (0.056)     
0.186  (0.087)
-0.003 (0.003)
-0.042  (0.011)
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IV. Marginal Models Repeated Measurements (MMRM):
 b. WGEE-Modeling Dropouts

 Table 5. Estimation results for the WGEE (model (2) and model (3)) 
compared with those of the GEE

Parameter WGEE
Est. (SE)         Est. ( SE)           Z

GEE
Est. (SE)

Intercept
Trt
Time
(Time-8)+

Time*trt
Trt*(time-8)+

1.654   (0.03)
0.059  (0.08)
0.001  (0.01)

-

 

0.014  (0.01)
0.012  (0.02)

-

 

0.075  (0.04)

1.656  (0.03)
0.104  (0.07) 

-

 

0.013 (0.01)

-

 

0.059 (0.02)

48.74
1.57

-1.11

-2.60

1.743   (0.058) 
0.062  (0.080)

-0.005   (0.005)

-0.069  (0.019)
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IV. Marginal Models Repeated Measurements (MMRM):
 b. WGEE-Modeling Dropouts

Comments:
•

 
Although the SE for WGEE estimates are, in general, 
smaller than their analogues of the GEE, the estimates 
are similar for the two approaches; that is, the adjustment 
for dropouts (MAR) did not change the GEE findings. 

•
 

Does the WGEE address our concerns about 
dropouts ?

•
 

Is it reasonable to handle dropouts due to irritation as 
treatment failures, using LOCF or other imputation 
methods ? 
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V. Generalized Linear Mixed Models (GLMM)  
Random Effect Model

The ‘marginal model’
 

might not be adequate to account 
for the correlation between repeated measurements, as it 
ignores within group (subject) correlation.

•
 

We consider GLMM which extends the GLM model by 
allowing the coefficient to vary within group, allowing for 
within–group correlations 

•
 

GLMM is a compromise between the population–average 
model (GLM) and group-specific model (over 
parameterized).

•
 

GLMM can be regarded as an extension for LME model to 
allow flexible class of distribution for response and natural 
scale for expected values (link function) 
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V. Generalized Linear Mixed Models (GLMM) 
Random Effect Model

GLMM definition:  
 
• ii XY ,  and iZ  represent response vector, fixed and random effect design 

matrices corresponding to group i 
• ii bY /  are assumed to be independently distributed according to some 

exponential family distribution with ib  representing random effects for group i. 
• ib ~ ),( ψ0N  

• )()/( iiiiii gE bZβXμbY b +==  for link function g  and fixed effect β  

• Var )()/( b
iii V μby φ=  for variance function V and dispersion parameter φ  

 
• ib  remains fixed for observations made on group i,: within group correlation. 
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We generalize model (1) by adding random effect (      )  to allow 
random intercept for each subject, one might consider subjects to have 
their own slopes as well. Specifically we consider the model:

(4)
where       ~             . Table (6) presents the results of fitting model (4). 

Table 6. Estimation results for GLMM (model (4)

 )*())/(log( 321000 iijiijiiij trttimetrttimebbYE ββββ ++++=

 ),0( 2σN

Parameter Estimate SE t Pr >|t|

Intercept
Treatment 
Time
Time*treat.
g11=var(b0i

 

)

1.744 
0.187
-0.003
-0.042
0.047

0.066
0.094
0.004
0.007
0.016

26.52
1.98
-0.83
-6.15

<0.001
0.049
0.409

<0.001

ib0

ib0

V. Generalized Linear Mixed Models (GLMM)  
Random Effect Model
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VI. Transition models: 
a. Autoregressive-type model:

Consider modeling the mean response as a function of previous counts in addition to  other 
covariates (Zeger (1988) and Zeger and Karim 1988). For the AK counts we consider fitting 
the following model:

(5)
It should be noted that such models do not have an explicit lag structure in the endogenous 
count variable.
The results of fitting this model using GLIMMIX, with random residual statement are given in 
Table(7) (interaction was not sig. with p-value= 0.844):

Table 7. Estimation results for model (5)

 )*())(log( )1(32)1(10 ijiijiij trtYtrtYYE −− +++= ββββ

Parameter Estimate SE t Pr > |t|
Intercept
Trt

1.101
-

 

0.195
0.103

0.090
0.071
0.012

12.26
- 2.73

8.29

< 0.001
0.007

< 0.001)1( −jiY
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VI. Transition model
 b. Generalized Poisson INAR(1) model

The INAR (1)-Poisson model:

The model is defined by (Al-Osh and Alzaid,1987 and McKenzie,1988):

•

 

‘

 

’

 

is the ‘survival’

 

or ‘carry out’

 

component and
•

 

‘

 

‘

 

is an innovation component. 

When the two components are independent ⇒ stationary Markovian 
process with Poisson marginal distribution. The INAR(1) is a special 
case of the Galton-Watson process with immigration. 

In modeling the AK context: the AK counts at time t consists of 2 
components: (i) # AK lesions ‘carried out’

 

or ‘survived’

 

from those 
present at time (t-1), where each lesion has a probability  of survival 
‘α’; and (ii) new lesions developed during the time interval (t-1, t].

ttt EYoY += −1α

tE
1−tYoα
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VI. Transition model
 b. Generalized Poisson INAR(1) model

•

 

The Poisson INAR(1) is parsimonious with interpretational appeals. 
However, for application it has the Poisson constraints (mean = 
variance). Several extensions have been proposed (e.g. Jung and 
Tremayne, 2006, Brannas and Hellstrom 2001, among others) to 
expand the model’s utility. 

•

 

A major drawback when modeling the AK counts is the underlying 
assumption that  individual lesions act independently in their ‘survival’

 
for next time (t+1]. 

•

 

We consider an extension of the model to allow (α) ‘the probability of 
survival’

 

to depend on some covariates including treatment. Such an 
extension would address some of points raised for the AK data, 
specifically:
(a) As (α) is the AR parameter ⇒ diff. corr for the active and placebo.
(b) By introducing depend. among the α’s ⇒ increase in the variance. 

•

 

However, such an extension would be at the expense of the simplicity 
of the model and its marginal distribution structure. Thus, previous 
extensions of the INAR(1) belong to the class non-Gaussian conditional 
AR(1) model (Grunwald, et al. 2000).
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VI. Transition model
 b. Generalized Poisson INAR(1) model

We consider fitting the following conditional INAR(1) model:

 jijiijji EYoXY += − )1()(α

)*())((log 3210 iijiijij trttimetrttimeXit ββββα +++=

 )*())((log 32110 iijiijiij trttimetrttimebXit ββββα ++++=

With:

Also, we consider extending model (a) by adding random intercept

 

to 
allow for variability across subjects. Thus we consider:

(a)

(6)

The results of fitting this model using Proc NLMIXED are given in the following 
table:

(b)
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VI. Transition model
 b. Generalized Poisson INAR(1) model

 
Table 8. Estimation results for models (6-a and 6-b)

Parameter Model (a)
Estimate   SE         Pr >|t|

Model (b)
Estimate     SE            Pr > |t|

Intercept
Time
Trt
Error (λ) 

2.054
-

 

0.024
-

 

0.088
0.740

0.489
0.253
0.022
0.329

< 0.001
0.346

< 0.001
0.026

28.076
-

 

0.275
-

 

1.180
0.190

10.634
0.119
0.540
0.093

0.009
0.024
0.033
0.047

g11= var 117.43 97.671ib0
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VI. Transition model
 b. Generalized Poisson INAR(1) model

Comments:
•

 
The utility of the INAR (1) is to test whether ‘α’

 
‘the survival 

probabilities’
 

are related to treatment and/or time. Here 
both treatment and time are significant.

•
 

The parameters of the two models (a and b) are of different 
magnitude and they have different interpretation 
(population average under (a) vs. subject specific under 
(b)). The magnitude of difference between the two sets of 
estimates is related to the variance of the random effect, 
which is in this case large. 
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VII. Overall Comments:

We considered several models for fitting Poisson data with dropouts. Which 
model to choose?

•

 

Selection of the appropriate model depends on the scientific question asked. 
Is the interest in testing efficacy in the overall population or in a subject drawn at 
random from the population?                                     
(marginal mean models vs subject specific (random effects) models)

Is the interest in investigating  a new therapy on response profile or mechanism 
or transition between states of possible values of the response?
(marginal vs transition model)

•

 

We considered a new generalization of the Poisson INAR(1) to fit

 

the clinical trial 
setting. The question of interest is whether treatment impacts the ‘survival 
probability’

 

of a lesion until the next time point.

•

 

Technical points: 
GEE vs WGEE depends on the dropouts mechanism ( MCAR vs MAR) 

Selection of reasonable starting values is critical in fitting NLMIXED models.
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